Eigenvectors

Key points

  • Matrices as linear transformations
  • Determinants
  • Linear Systems
  • Change of Bias

Scalar

  • A scalar is a number, like :
    • \( 2, -5, 0.368 \)

Vector

  • Vector can be thought of as a list numbers (can be in a row or column)
    • has rows OR columns

    • 2 numbers for 2D space, such as \( (2,4) \)

      • \( \begin{bmatrix} 2 \\ 8 \end{bmatrix} \)
    • 3 numbers for 3D space, such as \( (1,2,4) \)

      • \( \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \)
  • A vector can be in:
    • magnitude and direction (Polar) form,
    • or in x and y (Cartesian) form

import numpy as np
import matplotlib.pyplot as plt

def plot(V):

  origin = np.array([[0, 0, 0],[0, 0, 0]]) # origin point

  plt.figure(figsize=(8,8)) # 8 inches x 8 inches

  plt.grid()

  # Plot a 2D field of arrows.
  plt.quiver(*origin, V[:,0], V[:,1], color=['r','b','g'], scale=10)
  plt.show()
plot(np.array( [ [2,4] ] ) )

vec (2,4)

plot(np.array( [ [2,4], [2,3], [-2, 5] ] ) )

vec 2

Matrix

  • A Matrix is an array of numbers (one or more rows, one or more columns)

  • Has rows x columns

  • \( \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \)

  • \( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)

  • Note:

    • A vector is also a matrix!
    • It is special case of a matrix with just one row or one column
    • So the rules that work for matrices also work for vectors.
  • We can add and subtract matrices of the same size,

  • multiply one matrix with another as long as the sizes are compatible :

    • \( (n × m) × (m × p) = n × p) \)
  • multiply an entire matrix by a constant:

Tensor

Tensor is a generalized matrix.

  • 1-D matrix (a vector is actually such a tensor),
  • 3-D matrix (something like a cube of numbers),
  • 0-D matrix (a single number)
  • a higher dimensional structure that is harder to visualize.
  • The dimension of the tensor is called its rank.

Liner Transformation described by a matrix

This transformation in 2D :

\( \hat i \longrightarrow \begin{bmatrix} 3 \\ 0 \end{bmatrix} \)

\( \hat j \longrightarrow \begin{bmatrix} 1 \\ 2 \end{bmatrix} \)

is represented by the matrix: \( \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \)

  • Eigen vectors of the transformation

    • Each Eigen vector has Eigen value associated with it

    • Eigen value is the factor by which it will stretch or squash during the transformation

    • \( \begin{bmatrix} 3 \\ 0 \end{bmatrix} \) will stretch the length by factor of 3 during the transformation

      • Eigen value here is 3
    • \( \begin{bmatrix} -1 \\ 1 \end{bmatrix} \) will stretch the length by factor of 2 during the transformation

        • Eigen value here is 2
  • Eigen value with 1

    • Provides rotation
    • No stretching or squashing here, so length of the vector remains same

Eigen Value \( \lambda \)

  • Matrix-Vector multiplication

\(A \vec{v} = \lambda \vec{v} \)

  • Scales the Eigen Vector \( \vec{v} \) by \( \lambda \)

  • \( A \) is Transformation matrix

  • \( \vec{v} \) is Eigen Vector of \( A \)

  • Left hand side is Matrix-Vector multiplication

  • Right hand side is Scalar-Vector multiplication

  • Let us make both side as Matrix-Vector multiplication

\(A \vec{v} = \lambda \vec{v} \)

  • We can write the scalar \( \lambda \) as product of scalar and a Identity matrix \( I \):

\( \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \longrightarrow \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)

We can write this in terms of Identity matrix:

\( I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \)

as:

\(A \vec{v} = (\lambda I) \vec{v} \)

so both sides are now Matrix multiplication

so we get:

\(A \vec{v} - (\lambda I) \vec{v} = \vec 0 \)

let us factor out \( \vec{v} \)

\( (A - \lambda I) \vec{v} = \vec 0\)

we have a new Matrix

\( (A - \lambda I) \)

and determinant:

\( det (A - \lambda I) = 0 \)

So:

For this Matrix: \( \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} \) find this Matrix:

\( det( \begin{bmatrix} 3-\lambda & 1 \\ 0 & 2-\lambda \end{bmatrix} ) = ( 3 - \lambda) (2 - \lambda) - (0)(1) = ( 3 - \lambda) (2 - \lambda) \)

we have a quadratic polynominal in \( \lambda \)

\( ( 3 - \lambda) (2 - \lambda) = 0 \)

only possible Eigen values are

\( \lambda = 3 \) or \( \lambda = 2 \)

References

\( \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) \( \hat i \) to \( \begin{bmatrix} 3 & 5 \\ 0 & 10 \end{bmatrix} \) \( \longrightarrow \)