1. 1. Quick Introduction
    1. 1.1. Supervised Learning
    2. 1.2. Unsupervised Learning
  2. 2. Basic Linear Algebra needed
    1. 2.1. Eigenvectors
    2. 2.2. References
  3. 3. ML Models
    1. 3.1. Word2Vec
    2. 3.2. GloVe
  4. 4. Deep Learning
    1. 4.1. Neural Network
    2. 4.2. Gradient descent
    3. 4.3. Back Propagation
      1. 4.3.1. Calculus
    4. 4.4. Activation Function
    5. 4.5. Convolutional Neural Networks
    6. 4.6. Recurrent Neural Networks
      1. 4.6.1. MNIST
  5. 5. Tensorflow
    1. 5.1. TensorFlow.js
  6. 6. PyTorch
  7. 7. Transformers
    1. 7.1. BERT
    2. 7.2. GPT
    3. 7.3. T5
    4. 7.4. GitHub Copilot
    5. 7.5. References
  8. 8. Salesforce Einstein
    1. 8.1. Machine Learning
    2. 8.2. Natural Language Processing
    3. 8.3. Computer Vision
  9. 9. Google Cloud Platform
  10. 10. Processing Units
    1. 10.1. CPU
    2. 10.2. GPU
    3. 10.3. TPU
  11. 11. ML Pipelines
    1. 11.1. ML ops
    2. 11.2. TensorFlow Serving
    3. 11.3. TensorFlow Extended
      1. 11.3.1. Apache Airflow
      2. 11.3.2. Apache Beam
      3. 11.3.3. Kubeflow
    4. 11.4. AutoML
    5. 11.5. Kubernetes
  12. 12. Speedup
    1. 12.1. JAX
    2. 12.2. Closures and Decorators
    3. 12.3. References
  13. 13. OpenAI
    1. 13.1. API
    2. 13.2. Chat
    3. 13.3. Summarize
    4. 13.4. TLDR
    5. 13.5. Translate
    6. 13.6. Codex
  14. 14. Inspirations
  15. 15. Datasets
    1. 15.1. Boston Housing
  16. 16. Building ML for Industries
    1. 16.1. Lost-Found Item Management
  17. 17. Hardware
    1. 17.1. Raspberry Pi
  18. 18. Conversational-AI
    1. 18.1. Chatbots
    2. 18.2. Einstein Bots
    3. 18.3. DeepPavlov
    4. 18.4. Dialogflow
    5. 18.5. Rasa
  19. 19. Transformers
    1. 19.1. GPT
    2. 19.2. Building GPT
  20. 20. Tools
    1. 20.1. Infrastructure as code

Machine Learning for Everyone!

13. OpenAI